Data Linking

Angelica Lo Duca IIT-CNR angelica.loduca@iit.cnr.it

 \mathbf{U} at đ nke ema pa σ

Data Linking is the process of finding relationships or correspondences between resources of different datasets.

Data Linking

- Cannot be carried out manually at Web scale
- Automatic approaches
 - Ontology Matching
 - find schema matching
 - Instance Matching
 - find instances matching
 - use the **owl:sameAs** property to link resources

Ontology Matching

- Ontologies can be highly specialized
 - e.g. DBpedia has classes for *Educational Institutions*, *Bridges*, *Airports*, *etc*.
- But some can be rudimentary
 - e.g. in Geonames all instances only belong to a single class –
 'Feature'
- There might not exist exact equivalences between classes in two sources
 - Only subset relations possible

Ontology Matching Basic techniques

- name-based
 - \circ string-based
 - language-based
- structure-based

. . .

Name-based techniques

- They can be applied to the name, the label or the comments of classes in order to find those which are similar
- Useful if conceptual schemas (or ontologies) use very similar strings to denote the same concepts
- Yield many false positives, if pairs of strings with low similarity are selected

Name-based techniques (cont.)

- string-based
 - compare strings with a metrics
 - the metrics maps two strings to a real number
- language-based
 - exploit linguistic transformations to compare strings

String-based techniques (cont.)

- Levenshtein distance
 - Measure the similarity between two strings by the minimum number of insertions, deletions, and substitutions of characters required to transform one string into the other
- Token-based distance
 - Treats strings as a bag of words (multisets of substrings)
 - May split strings into independent tokens
 - Calculate words frequency for each string
 - Compare bag of words with a metric (e.g. cosine-similarity)

Language-based techniques

- Intrinsic methods
 - reduce each term to a normal form to facilitate matching
 - use traditional natural language processing techniques
 - stopword elimination
 - tokenization: segment strings into sequences of tokens
 - lemmatization: reduce words to normal forms
 - suppress tense, gender and number

Language-based techniques (cont.)

- Extrinsic methods
 - Use dictionaries, lexicons and terminologies to help match terms from different schemas or ontologies
 - e.g. a terminology a thesaurus which very often contains phrases rather than single words
 - deal with synonyms
 - word sense disambiguation

Ontology Matching Basic techniques

- name-based
 - \circ string-based
 - language-based
- structure-based
- ...

Structure-based techniques

- Internal structure (constraint-based approaches)
 - based on the internal structure of classes
 - \circ $\,$ calculate the similarity between two classes based on
 - the set of their properties, including keys
 - the range of their properties (attributes and relations)
 - the cardinality of their properties
 - the transitivity or symmetry of their properties
- extensional techniques
 - When two ontologies share the same set of individuals, matching is highly facilitated

Internal Structure-based techniques (cont.)

Relational Structure

- similarity between two concepts
- based on the relations between the concepts with other concepts
- similar concepts should have similar related concepts

• Taxonomic Structure

- Similarity between two concepts
- Based on the graph of the subClassOf relation

Extensional Structure-based techniques

- Jaccard Similarity
 - The Jaccard index is defined as the size of the intersection of two sets divided by the size of the union of the two sets.
 - Given two sets A and B, let P(X) be the probability of a random instance to be in the set X
 - Note that the Jaccard Similarity reaches 1 when A = B and 0 when they are disjoint.

Instance Matching

- Some techniques used for Ontology matching can be used also for instance matching
- Existing tools can be used
 - Open Refine
 - Silk

Open Refine (also known as Google Refine)

- Powerful tool to work with messy data
 - cleaning
 - transforming
 - extending
- Download
 - <u>http://openrefine.org</u>
- Run
 - <u>http://127.0.0.1:3333</u>
- Plugin for Linked Data Linking
 - RDF Extension for Open Refine
 - <u>http://refine.deri.ie</u>

RDF extension for Open Refine

- Setup & Run
 - Make sure "extensions" folder exists in your Open Refine workspace
 - Download the extension
 - Extract the downloaded zip file to the "extensions" folder
 - Restart Google Refine

General Refine Expression Language (GREL)

- GREL is a language to manipulate data in Open Refine
- Documentation
 - <u>https://github.com/OpenRefine/OpenRefine/wiki/General-Refine-Expression-Language</u>