
Li
nk

ed
 O

pe
n

D
at

a:

a
pa

ra
di

gm
 fo

r t
he

Se

m
an

tic
 W

eb

Angelica Lo Duca
IIT-CNR
angelica.loduca@iit.cnr.it

SPARQL

SPARQL

● SPARQL is a query language designed specifically to
query RDF databases

● SPARQL means pattern matching
○ find a subgraph that matches a query

Structure of a SPARQL query

PREFIX ex: <http://example.com/resources/>

QUERY_TYPE Projection
FROM
WHERE {
 ...
}
QUERY MODIFIERS ...

Prefix

● keeps queries readable

● Examples:
○ PREFIX : <http://example.com/base/>
○ REFIX foaf: <http://xmlns.com/foaf/0.1/>

http://example.com/base/
http://xmlns.com/foaf/0.1/

Query Types
● SELECT

○ returns a result table
● ASK

○ returns (boolean) true, if the pattern can be matched
● CONSTRUCT

○ creates triples using templates
● DESCRIBE

○ returns descriptions of resources

From Clause

● Specifies which graphs should be considered by the
endpoint.
○ if omitted, the default graph is used.
○ if specified, the query is evaluated using all specified

graphs.
○ if specified as named graph, the named graphs can

be used in parts of the query.

Query Modifiers

● Change the result of a query
● LIMIT and OFFSET slice the result set

○ example: SELECT * WHERE {.....} LIMIT 10
■ display only 10 results

● ORDER BY sorts the result set
○ example: SELECT * WHERE {.....} ORDER BY ASC(...)

■ display the sorted result set

Where Clause

● Specifies the conditions

SPARQL Syntax

SELECT ?subject ?predicate ?object

WHERE {

?subject ?predicate ?object .

}

Search all the possible triples within
the Knowledge Base

SPARQL First Example

PREFIX ex: <http://www.ex.com>

SELECT ?subject

WHERE {

?subject rdf:type ex:Animal .

}

Search all the possible Animals

SPARQL endpoint
● It is a service that accepts query SPARQL

DBpedia

● DBpedia is the Linked Data version of Wikipedia
● SPARQL endpoint

○ http://dbpedia.org/sparql

http://dbpedia.org/sparql
http://dbpedia.org/sparql

Search the Galileo Galilei’s birth place

● Galileo Galilei on DBpedia
● http://dbpedia.org/resource/Galileo_Galilei

● Birth place property
○ dbo:birthPlace

http://dbpedia.org/resource/Galileo_Galilei
http://dbpedia.org/resource/Galileo_Galilei

Solution

PREFIX : <http://dbpedia.org/resource/>

SELECT ?birthPlace

WHERE {

:Galileo_Galilei dbo:birthPlace ?birthPlace .

}

Syntax

PREFIX : <http://dbpedia.org/resource/>

SELECT ?birthdate ?deathdate
WHERE {
 :Galileo_Galilei dbp:birthDate ?birthdate .

:Galileo_Galilei dbp:deathDate ?deathdate .
}

Syntax (2)

PREFIX : <http://dbpedia.org/resource/>

SELECT ?birthdate ?deathdate
WHERE {
 :Galileo_Galilei dbp:birthDate ?birthdate;

 dbp:deathDate ?deathdate.
}

ORDER BY Operator

PREFIX : <http://dbpedia.org/resource/>

SELECT ?person ?birthdate
WHERE {

?person dbp:birthPlace :Pisa;
dbp:birthDate ?birthdate.

}
ORDER BY ASC(?person)

Select the birth date of all
persons born in Pisa and order

by person

FILTER Operator
PREFIX : <http://dbpedia.org/resource/>

SELECT ?person ?birthdate
WHERE {

?person dbp:birthPlace :Pisa;
 dbp:birthDate ?birthdate.

FILTER (?birthdate >= '1500-01-01'^^xsd:date &&
 ?birthdate < '1900-01-01'^^xsd:date)

}
ORDER BY ASC(?birthdate)

Select the birth date of
all persons born in Pisa

between 1500-01-01
and 1900-01-01 and

order by person

Filter Operations

● Logical: !, &&, ||
● Math: +, -, *, /
● Comparison: =, !=, >, <, ...
● SPARQL tests: isURI, isBlank, isLiteral, bound
● SPARQL accessors: str, lang, datatype, sameTerm,

langMatches, regex

UNION Operator

PREFIX : <http://dbpedia.org/resource/>

SELECT ?person ?birthdate
WHERE {

{ ?person dbp:birthPlace :Pisa;
 dbp:birthDate ?birthdate. }
UNION
{ ?person dbp:birthPlace :Milan;
 dbp:birthDate ?birthdate.}

}

Select the birth date
of all persons born in
Pisa or born in Milan

OPTIONAL Operator

● The previous queries return only resources where the
property searched is present
○ for example, if for a resource only the birth date is

present but not the birth place, the resource is
discarded from the query

● Optional operator overcomes this problem

OPTIONAL Operator (2)
PREFIX : <http://dbpedia.org/resource/>

SELECT ?person ?birthDate

WHERE{

?person dbp:birthPlace :Pisa .

OPTIONAL{

?person dbp:birthDate ?birthDate .

}

}

Select persons born in Pisa. If
available, select also their birth

date

GROUP BY - HAVING

● Works like in SQL
● In order to calculate aggregate values for a solution, the

solution is first divided into one or more groups, and the
aggregate value is calculated for each group

● HAVING operates over grouped solution sets,
○ FILTER operates over un-grouped ones.

A more complex query
Select all the Italian writers, born
between 1500 and 1900, who
wrote at least two works.

?person

dbo:Writer

rdf:type

?birthDate

dbp:birthDate

?work

dbo:writer

dbr:Italians

dbp:nationality

Note on DBpedia prefixes

http://dbpedia.org/sparql

● dbr - dbpedia resources
● dbo - dbpedia ontology
● dbp - dbpedia properties

http://dbpedia.org/sparql
http://dbpedia.org/sparql

Select all the writers
SELECT ?person

WHERE{

?person rdf:type dbo:Writer .

}

LIMIT 10

?person

dbo:Writer

rdf:type

?birthDate

dbp:birthDate

?work

dbo:writer

dbr:Italians

dbp:nationality

Select all the Italian writers
SELECT ?person

WHERE{

?person rdf:type dbo:Writer ;

dbp:nationality dbr:Italians .

}

LIMIT 10

?person

dbo:Writer

rdf:type

?birthDate

dbp:birthDate

?work

dbo:writer

dbr:Italians

dbp:nationality

Born between 1900 and 1950
SELECT ?person ?birthDate

WHERE{

?person rdf:type dbo:Writer ;

dbp:nationality dbr:Italians ;

dbp:birthDate ?birthDate .

FILTER (?birthDate >= "1500"^^xsd:date &&
?birthDate <= "1900"^^xsd:date)

}

?person

?birthDate

dbp:birthDate

?work

dbo:writer

Who wrote at least two works
SELECT ?person COUNT(?work) AS ?nwork

WHERE{

?person rdf:type dbo:Writer ; dbp:birthDate ?birthDate; dbp:nationality dbr:Italians .

FILTER (?birthDate >= "1500"^^xsd:date && ?birthDate <= "1900"^^xsd:date)

?work dbo:author ?person .

}

GROUP BY ?person

HAVING(COUNT(?work) > 1)
?person

?work

dbo:writer

Another complex query
Select all Leonardo da Vinci’s
works, which are hosted by the
Louvre

http://dbpedia.org/page/Leonardo_da_Vinci

Another complex query
SELECT ?person ?work

WHERE

{

?person foaf:name "Leonardo da Vinci"@en .

?work dbo:author ?person;

 dbo:museum dbr:Louvre.

}

A simpler solution
SELECT ?work

WHERE

{

?work dbo:author <http://dbpedia.org/resource/Leonardo_da_Vinci>;

 dbo:museum dbr:Louvre.

}

Another exercise

Select all Italian Presidents and list them in the correct order of mandate

A possible strategy
● Search on DBpedia Sergio Mattarella, the current Italian President

○ http://dbpedia.org/resource/Sergio_Mattarella

● Look at his properties and search for a property which indicates that he is the
Italian president

○ dct:subject dbc:Presidents_of_Italy

● Search on DBpedia another Italian President, e.g. Giorgio Napolitano and
check if he also contains the property dct:subject dbc:Presidents_of_Italy

YES THERE IS!

● Write the first part of the query

http://dbpedia.org/resource/Sergio_Mattarella
http://dbpedia.org/resource/Sergio_Mattarella

Select all the Italian Presidents

SELECT ?president

WHERE {

?president dct:subject dbc:Presidents_of_Italy .

}

Presidents must be ordered by ascending mandate

● Search for a property that contains a progressive number
indicating the number of mandate
○ two properties:

■ dbo:office
■ dbo:orderInOffice

○ select the UNION of the properties
○ filter only the strings containing the word “President of

Italy”

Select office
SELECT ?president ?office WHERE {

?president dct:subject dbc:Presidents_of_Italy .

{?president dbo:office ?office .

FILTER (regex(str(?office), "President of Italy"))}

UNION

{?president dbo:orderInOffice ?office .

FILTER (regex(str(?office), "President of Italy"))}

}

Select the progressive number of the office
● extract a substring

○ if the string starts with a number followed by a character, take only one
character and convert it in integer

○ else
■ if the string starts with two characters (i.e. Gronchi), set the number

to 3 (Gronchi was the 3rd Italian President)
■ else

● take two characters and convert them to integer
● order result by asc

IF function form

IF (expression1, expression2, expression3)

The IF function form evaluates the first argument, interprets it as an effective
boolean value (EBV), then returns the value of expression2 if the EBV is true,
otherwise it returns the value of expression3.

Order by
SELECT ?president ?office ?off WHERE {
?president dct:subject dbc:Presidents_of_Italy .
{ ?president dbo:office ?office .

FILTER (regex(str(?office), "President of Italy"))}
UNION{

?president dbo:orderInOffice ?office .
FILTER (regex(str(?office), "President of Italy"))}

bind(
IF(regex(?office, "^[0-9][a-zA-Z]") = 1, xsd:integer(substr(?office, 1,1)),
IF(regex(?office, "^[a-zA-Z]+") = 1, 3, xsd:integer(substr(?office,1,2)))) as

?off)
}
ORDER BY ASC(?off)

Other functions
● BOUND (variable var)

○ Returns true if var is bound to a value. Returns false otherwise. Variables
with the value NaN or INF are considered bound.

● COALESCE(expression,)
○ The COALESCE function form returns the RDF term value of the first

expression that evaluates without error. In SPARQL, evaluating an
unbound variable raises an error.

● NOT EXISTS { pattern }
○ Returns false if pattern matches. Returns true otherwise.

Other functions (cont.)
● EXISTS { pattern }

○ Returns true if pattern matches. Returns false otherwise.
● IN (expression, ...)

○ tests whether the RDF term on the left-hand side is found in the values of
list of expressions on the right-hand side. The test is done with "="
operator, which tests for the same value

● NOT IN (expression, ...)
○ The NOT IN operator tests whether the RDF term on the left-hand side is

not found in the values of list of expressions on the right-hand side.

Conclusions

● To query an RDF dataset we need to know
○ entities URIs
○ deep knowledge of the ontology
○ the SPARQL language

