[S-MOOS Documentation

Andrea Caiti, Vincenzo Calabro,
Gianluca Dini, Angelica Lo Duca, Andrea Munafé

August 30, 2012

Contents

1 The IS-MOOS Framework
1.1 MOOS
1.2 IS-MOOS e

2 Setup a new Network
21 MOOSDB e
2.2 MOOSclient
2.3 The Security Suite

Chapter 1

The IS-MOOS Framework

IS-MOOS (Inter-vehicle Secure MOOS) is an extension of MOOS (Mission Ori-
ented Operating Suite) [Oxford Mobile Robotics Group, 2001]. While MOOS
was originally designed as a pub/sub system to be used inside a vehicle, IS-
MOOS is a pub/sub system supporting inter-vehicle communication.

In the remainder of the chapter we firstly describe the MOOS architecture
and then we briefly illustrate the IS-MOQOS architecture. For other details on
how to write a MOOS application, please give a look at [Newman, 2009].

1.1 MOOS

The MOOS (Mission Oriented Operating Suite) framework is a centralized
pub/sub system, allowing communication among modules inside a vehicle. A
module is an application used by the vehicle for a specific purpose (e.g. collect
information from the environment or calculate the position of the vehicle). A
module can be one of those described in [Benjamin et al., 2010] or it can be
implemented by the programmer.

MOOS is composed of a central server, called the MOOSDB, acting as the
dispatcher and multiple clients, i.e. the modules of the vehicle. Figure 1.1 shows
an example of the MOOS framework: there is the central server (MOOSDB)
and three modules: the Geo Position, which monitors the position of the vehicle
in the environment, the Temperature Sensor, which measures the temperature
of the water, and the Remote Shell, which allows a remote user to access the
vehicle in order to send commands or to retrieve information from the other
modules.

The communication between the MOOSDB and each client is achieved through
the Transfer Control Protocol (TCP), which requires an end-to-end connection
between the client and the MOOSDB. When a client wants to join the system, it
must perform an handshake with the MOOSDB. The handshake is made of two
phases: a) TCP handshake, b) MOOS handshake. During the TCP handshake
the client establishes a TCP connection with the MOOSDB, while during the

MOOSDB

Figure 1.1: The MOOS framework inside a vehicle.

IS-MOOSDB

Figure 1.2: The IS-MOOS structure.

MOOS handshake, the client and the MOOSDB exchange some useful informa-
tion (i.e. client identifier and clock for synchronization).

The MOOSDB has a single thread architecture so that it is able to serve
one client per time, although each client is associated a TCP socket. If for
some reasons the connection between the MOOSDB and a client gets lost (e.g.
the client does not transmit for long periods), MOOS provides a mechanism
allowing a client to automatically connect again to the MOOSDB. This mech-
anism guarantees that the end-to-end communication between each client and
the MOOSDB is always up.

1.2 IS-MOOS

Figure 1.2 shows the IS-MOOS structure. IS-MOOS is designed to work in the
underwater scenarios. However, it can also be used in other environments.
The communication between each client and the IS-MOOSDB is realized

through the User Datagram Protocol (UDP). UDP presents many advantages
when used into an underwater environment. Firstly, it does not need an end-
to-end communication so that all the problems related to the connection man-
agement are completely avoided. In practice, a client must not open and close a
connection with the ISSMOOSDB. Secondly, UDP does not need a preliminary
handshake between the client and the ISSMOOSDB so that the problem of fre-
quent disconnections due to the acoustic channel are completely avoided. The
main drawback of UDP is that it does not provide any mechanism for packet
retransmission. However, this problem can be solved by performing the packet
retransmission at the MAC and application layers.

In order to support UDP, the IS-MOOSDB architecture has been redesigned.
The IS-MOOSDB has a multi thread architecture in order to serve many clients
per time. In practice, each client c is associated a thread T,. The client ¢ must
know in advance the address and the port which the associated thread T, is
listening to. If the client ¢ wants to send a message, it is sufficient that it begins
to transmit at the address and port which T, is listening to, without perfoming
any premilinary handshake. When the thread T, has a message m for ¢, it sends
c the message m together with the information for clock synchronization.

The described mechanism allows to establish a bond between the client ¢ and
the thread T.. However, since there is not any preliminary handshake, it may
happen that a client ¢’ begins to send messages to the thread T,.. In order to
avoid this problem, all the messages are authenticated through the mechanism
described in the next section. Upon receiving a message the thread T, verifies
the authenticity of its source.

IS-MOOS also supports security. In particular it manages confidentiality,
integrity and authenticity of messages. For more details about the cryptographic
suite, please give a look at [Dini and Lo Duca, 2011].

Chapter 2

Setup a new Network

In order to configure a new network, you must have one MOOSDB and many
MOOS clients. The MOOSDB and the MOOS clients should be physically
located into different machines. However, you could also deploy them into a
single machine. For the installation of the MOOSDB or a MOOS client, please
refer to [Newman, 2009].

Each client must be associated in advance to an UDP PORT on the MOOSDB
and must know in advance the IP address and the UDP PORT on the MOOSDB.

Both the MOOS clients and the MOOSDB must be associated to a configura-
tion file, with extension .ini, generally named Mission.moos. In the remainder of
the chapter we describe the configuration file for the MOOSDB and the MOOS
client separately. Since both the client and the MOOSDB share the Security
parameters, they are described into a separate section.

2.1 MOOSDB

The MOOSDB configuration file is described in [Newman, 2009]. The IS-MOOS
framework adds the following paramters:

TRANSPORT_PROTOCOL = UDP|TCP
It specifies the transport protocol. It can be TCP or UDP.

NUM_PORTS = 10
MIN_PORT = 6000

If protocol is UDP you must specify the number of parallel communications
allowed. This is specified by NUM_PORTS. if the number of clients is greater than
this number, some clients must wait before be served if the protocol is UDP you
must specify the minimum port value used assigned by the server to the client
for communication If you do not know how to set up such value, leave default.

READ_TIMEOUT = 20
ABSENT_CLIENT_TIMEQOUT = 420

The parameter READ_TIMEQUT specifies the timeout in seconds for read opera-
tions. A value less than 5 is not recommended, because MOOSDB is not able to
accept connections The parameter ABSENT_CLIENT_TIMEOUT defines the timeout
in seconds after which a client is considered disconnected.

The MOOSDB also supports some default topics, which do not need to be
registered. All the connected clients are subscribed to the default topics. In
order to specify some default topics use the following parameter:

DEFAULT_TOPICS = 1:topicl|2:topic2...

where each topic must be specified through the syntax n:topicn, where n is
the number of default topic, while topicn is the name of the topic.

2.2 MOOS client

The MOOS client configuration file is described in [Newman, 2009]. The IS-
MOOS framework adds the following parameters:

TRANSPORT_PROTOCOL = UDP|TCP
ServerPort = xxxx

It specifies the transport protocol. It can be TCP or UDP. If the proto-
col is UDP, you must specify the ServerPort parameter, which indicates the
MOOSDB port at which the client must connect.

2.3 The Security Suite

The security suite must be configured in the configuration file. both in the client
and the MOOSDB.

ENABLE_ENCRYPTION = TRUE|FALSE
ENCRYPTION_ALG = AES|BLOWFISH|CAST5|RC2
ENCRYTPION_KEY = XXXXX

These parameters specify if encryption of messages must be enabled or not. The
supported encryption algorithms are: AES, BLOWFISH, CAST5 or RC2. The
encryption key must be 32 bytes length. The encryption algorithm is symmetric
so that all the clients share the same key.

ENABLE_INTEGRITY = TRUE|FALSE
INTEGRITY_ALG = SHA2|MD5
INTEGRITY_KEY = XXXXX

These parameters specify if integrity of messages must be enabled or not. In
this case, a hash is appended to the original message. The supported integrity
algorithms are: SHA2 and MD5. The integrity key must be 32 bytes length.
The length of the hash is 16 (MD5) or 20 (SHA1) bytes. The hash of a message
can be truncated, by setting the DIGEST_TRUNCATION parameter to TRUE and
by specifying the length of the hash through the parameter DIGEST_LENGTH.

DIGEST_TRUNCATION = TRUE|FALSE
DIGEST_LENGTH = XXXX (e.g. 4)

Bibliography

[Benjamin et al., 2010] Benjamin, M. R., Schmidt, H., Newman, P. M., and
Leonard, J. J. (2010). Nested autonomy for unmanned marine vehicles with
moos-ivp. Journal of Field Robotics, 27(6):834-875.

[Dini and Lo Duca, 2011] Dini, G. and Lo Duca, A. (2011). A cryptographic
suite for underwater cooperative applications. In IEEFE International Sym-

posium. on Computers and Communications (ISCC’11), Kerkyra, Corfu
(Greece).

[Newman, 2009] Newman, P. (2009). Introduction to pro-
gramming with moos, http://www.robots.ox.ac.uk/ pnew-
man/moosdocumentation/programmingwithmoos/latex/programmingwithmoos.pdf.

[Oxford Mobile Robotics Group, 2001] Oxford Mobile = Robotics Group
(2001). The moos cross platform software for robotics research,
http://www.robots.ox.ac.uk/ mobile/moos/wiki/pmwiki.php.

